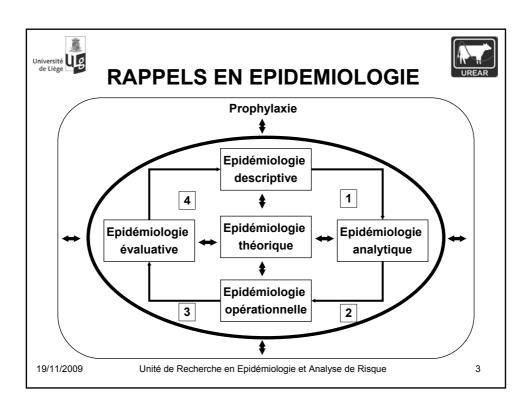


PARACLINIQUES 2^{EME} DOC

Plan de la présentation

EPIDEMIOLOGIE:


- ✓ Standardisation des taux
- ✓ Dépistage des maladies infectieuses animales

ANALYSE DE RISQUE:

- ✓ Risque d'importation d'une maladie dans un pays indemne
- ✓ Calcul de la taille de l'échantillon pour déceler au moins un animal malade

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

Principaux secteurs de <u>l'épidémiologie</u>

- ✓ Descriptive : Connaissance des caractéristiques dans le temps et l'espace de la maladie
- ✓ Analytique : Connaître les mécanismes de développement de la maladie, les analyser pour en comprendre le fonctionnement et pouvoir les expliquer.
- ✓ Opérationnelle : Conception et application de mesures de lutte contre cette maladie.
- ✓ Evaluative : Evaluation du programme de lutte.
- √ Théorique: Modélisation des maladies et troubles de la santé pour mieux les comprendre et les anticiper

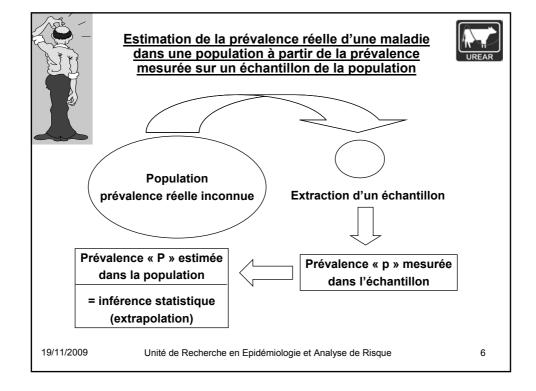
Autres déclinaisons possibles: Epidémio. Expérimentale

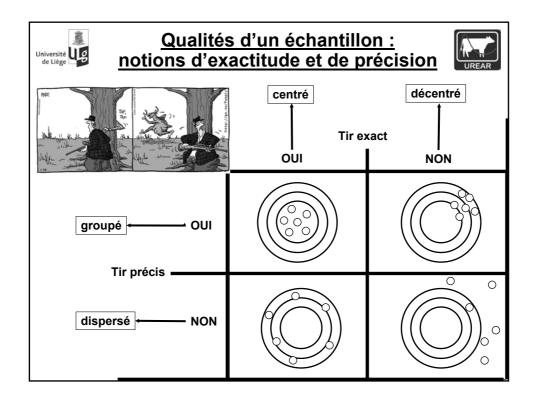
Epidémio. moléculaire

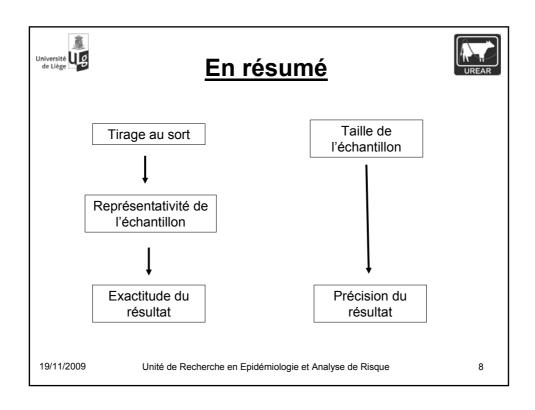
19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

Définitions de base

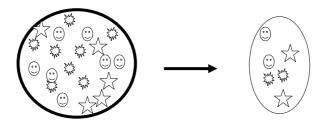



"... JUST WHAT WE NEEDED --A PUDDLE TOO BIG TO WALK AROUND!"


- ✓ Prévalence : nombre de cas à un moment donné
- Incidence : nombre de nouveaux cas apparus sur une période donnée

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque



Echantillonnage

- Empirique : non tiré au sort (commodité), biais important
- Aléatoire simple : Tirage au sort avec probabilités égales (base de sondage : liste exhaustive des individus de la population)

19/11/2009

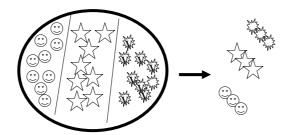
Unité de Recherche en Epidémiologie et Analyse de Risque

9

Echantillonnage

- Aléatoire systématique : Pas de base de sondage, mais une règle de choix des sujets à inclure, commode, liée au hasard et appliquée systématiquement :
 - ✓ Ex. à intervalles réguliers :
 - √ Taux de sondage = n/N =1/x
 - ✓ On prend les individus : a+x, a+2x, a+3x... jusqu'à avoir le nombre voulu pour le degré de précision souhaité
 - √ (a au hasard entre 0 et x).

19/11/2009


Unité de Recherche en Epidémiologie et Analyse de Risque

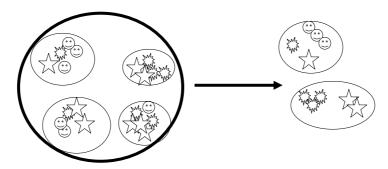
Echantillonnage

o Aléatoire stratifié

Tirage au sort dans chaque strate: sous-populations plus homogènes puis tirage au sort

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

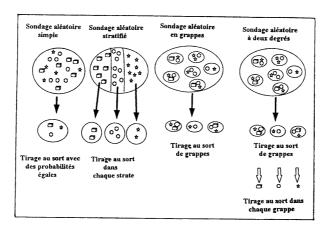

11

Echantillonnage

Aléatoire en grappes (ex : troupeau = grappe)

 Aléatoire à plusieurs degrés : Plusieurs tirages au sort successifs (ex: au sein d'élevages tirés au sort, on tire au sort quelques individus).

19/11/2009


Unité de Recherche en Epidémiologie et Analyse de Risque

Echantillonnage

FIGURE 3.8
Les principaux échantillons aléatoires

Toma et al., 2001

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

13

STANDARDISATION DES TAUX

Population hétérogène

- = ensemble de sous-populations (régions)
 - Composition du cheptel (type d'élevage, âge, caractérisitques)
 - Densité d'animaux

Il faut obtenir des informations comparables entre régions!

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

Diapositive 13

- .1 plusieurs degrès: - communes

- troupeaux - animaux henry; 11/11/2005

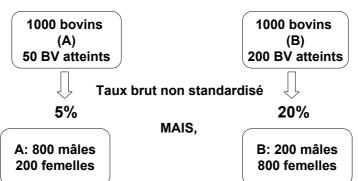
STANDARDISATION DES TAUX

Plusieurs étapes:

- 1. Calculer les taux spécifiques pour chaque catégorie dans chaque région
- 2. Créer la population de référence
- 3. Calculer le nombre de foyers « attendus » dans la population de référence
- 4. Calculer les taux standardisés

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque


15

STANDARDISATION DES TAUX Exemple 1

✓ Prévalence annuelle des mammites

STANDARDISATION DES TAUX Exemple 1

✓ Prévalence annuelle des mammites

2000 bovins (A) 1000 mâles 1000 femelles

2000 bovins (B) 1000 mâles 1000 femelles

Taux standardisé

(50/200)X1000 **=250 = 25%**

(200/800)X1000 **=250 = 25%**

La standardisation des taux permet de « neutraliser » Des variations liées à la composition démographique Des populations étudiées

STANDARDISATION DES TAUX: Exemple 2

✓ Exemple de standardisation directe des taux dans 2 zones A et B

Foyers d'une pathologie X dans 2 régions: A et B

Région A

Régi	ion E	}
Nombre	Nombre	

Elevages	Nombre d'élevages	Nombre de foyers	Taux spécifiques				
Laitiers	8000	80	1%				
Allaitants	2000	220	11%				
Total	10000	300					
Taux brut non standardisé = 300/10 000 = 3%							

	d'élevages	de foyers	spécifiques
Laitiers	2000	22	1,1%
Allaitants	8000	800	10%
Total	10000	822	

Taux brut non standardisé = 822/10 000 = 8,22%

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

STANDARDISATION DES TAUX: Exemple 2

Création de la population de référence:

Elevages	Nombre d'élevages
Laitiers	10 000
Allaitants	10 000

Région A

Région B

Elevages	Nombre d'élevages	Taux spécifiques	Nombre de foyers	Elevages	Nombre d'élevages	Taux spécifiques	Nombre de foyers
Laitiers	10 000	1%	100	Laitiers	10000	1,1%	110
Allaitants	10 000	11%	1100	Allaitants	10000	10%	1000
Total	Total 20 000 1200		Total	20000		1110	
Tau	ıx standardisé:	1200/20000 = 6	5%	Taux	standardisé =	: 1110/20 000 =	5,6%

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

19

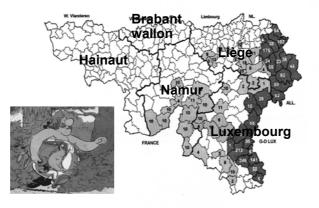
STANDARDISATION DES TAUX: Exemple 3

Enquête séro-épidémiologique sur la prévalence de la maladie d'Aujeszky chez le sanglier en Wallonie

Czaplicki G., Dufey J., Saegerman C. Le sanglier est-il un réservoir potentiel du virus de la maladie d'Aujeszky pour les élevages porcins? *Epidémiol. et santé anim.*, 2006, **49**, 89-101.

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque



En 2004

Figure 3

Répartition du nombre de sangliers testés par commune en vue du dépistage de la maladie d'Aujeszky (année 2004)

(Czaplicki et al., 2006)

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

21

STANDARDISATION DES TAUX: Exemple 2

Enquête séro-épidémiologique sur la prévalence de la maladie d'Aujeszky chez le sanglier en Wallonie

- ✓ Population hétérogène
 - Age (jeune, adulte)
 - Sexe

- → **STRATIFICATION** nécessaire
- ✓ Densités de populations différentes entre régions
 - → **STANDARDISATION** nécessaire

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

STANDARDISATION DES TAUX: Exemple 3

La structure de la population a évolué

Comparer les provinces

Pour 2004:

- Etape 1 → calculer le taux spécifique pour chaque catégorie dans chaque province
- Etape 2 → créer la population de référence
- Etape 3 → standardiser

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

23

Etape 1: calcul des taux spécifiques

Luxembourg

Na	ımur
----	------

		+	Testés	Taux spécifiques			+	Testés	Taux spécifiques
TJ	F	15	85	0.18	TJ	F	0	1	0.00
	M	12	65	0.18		М	1	4	0.25
J	F	17	188	0.09	J	F	6	19	0.32
	M	12	197	0.06		М	1	18	0.06
JA	F	17	103	0.17	JA	F	1	7	0.14
	М	13	71	0.18		М	1	6	0.17
Α	F	19	50	0.38	Α	F	9	21	0.43
	М	7	34	0.21		М	9	20	0.45

TJ = Très jeunes (0-6 mois); J = jeunes (6-12 mois) = JA = jeunes adultes (12-24 mois); A = adultes (> 24 mois)

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

Etape 2: créer la population de référence

CATEGORIE	SEXE	TESTES	PROPORTION (%)
Très jeunes	F	127	8.90
0-6 mois	М	102	7.15
Jeunes	F	300	21.02
6-12 mois	М	295	20.67
Jeunes adultes	F	172	12.05
12-24 mois	М	125	8.76
Adultes	F	180	12.61
>24 mois	М	126	8.83
TOTAL		1427	100

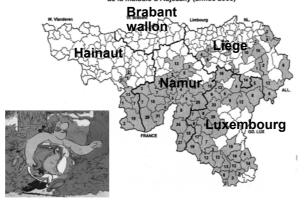
19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

25

Etape 3: Standardisation

Catágoria		LUXE	MBOUF	RG	NAMUR			
Catégorie d'animaux	Sexe	Testés réf	Taux sp	Cas +	Testés réf	Taux sp	Cas +	
Très jeunes	F	127	0.18	22	127	0.00	ND	
0-6mois	М	102	0.18	19	102	0.25	26	
Jeunes	F	300	0.09	27	300	0.32	95	
6-12 mois	М	295	0.06	18	295	0.06	16	
Jeunes adultes	F	172	0.17	28	172	0.14	25	
12-24 mois	М	125	0.18	23	125	0.17	21	
Adultes	F	180	0.38	68	180	0.43	77	
>24 mois	М	126	0.21	26	126	0.45	57	
TOTAL	1	1427	_	231	1427	_	317	
Taux de prévaler	Taux de prévalence standardisée (TPS)				TPS	0.2221		
	%					%		



Enquête sérologique Aujeszky: situation 2005

Répartition du nombre de sangliers testés par commune en vue du dépistage

(Czaplicki et al., 2006)

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

27

STANDARDISATION DES TAUX: Exemple 3

La structure de la population a évolué entre 2004 et 2005 → standardiser à nouveau Pour 2005:

- Etape 1 → calculer le taux spécifique pour chaque catégorie dans chaque province
- Etape 2 → créer la population de référence
- Etape 3 → standardiser

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

Etape 1: taux spécifiques (2005)

Luxembourg

Namur

			Testés	Taux spécifiques				+	Testés	sp	Taux pécifiques
TJ	F	3	34	0.09]	TJ	F	3	35		0.09
	М	5	32	0.16	1		М	1	18		0.06
J	F	5	50	0.10	1	J	F	6	50		0.12
	М	3	55	0.05	1		М	2	25		0.08
JA	F	7	41	0.17	1	JA	F	6	31		0.19
	М	7	56	0.13	1		М	10	25		0.40
Α	F	11	29	0.38		Α	F	26	51		0.51
	М	23	51	0.45			М	24	57		0.42

TJ = Très jeunes (0-6 mois); J = jeunes (6-12 mois); JA = jeunes adultes (12-24 mois); A = adultes (> 24 mois)

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

29

Etape 2: population de référence (2005)

STRATES

	CATEGORIE	SEXE	TESTES	PROPORTION (%)
	Très jeunes	F	74	9,34
	0-6mois	М	55	6,94
	Jeunes	F	124	15,66
	6-12 mois	М	110	13,89
	Jeunes adultes	F	97	12,25
	12-24 mois	М	101	12,75
	Adultes	F	106	13,38
	>24 mois	М	125	15,78
	TOTAL		792	100

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

Etape 3: Standardisation (2005)

Catémoria		LUX	KEMBOL	JR	G	N	IAMUR	
Catégorie d'animaux	Sexe	Testés réf	Taux sp		Cas +	Testés réf	Taux sp	Cas +
Très jeunes	F	74	0.09		7	74	0.09	6
0-6mois	М	55	0.16		9	55	0.06	3
Jeunes	F	124	0.10		12	124	0.12	15
6-12 mois	М	110	0.05		6	110	0.08	9
Jeunes adultes	F	97	0.17		17	97	0.19	19
12-24 mois	М	101	0.13		13	101	0.40	40
Adultes	F	106	0.38		40	106	0.51	54
>24 mois	М	125	0.45		56	125	0.42	53
TOTAL		792	_		160	792	_	199
Taux de prévalen	Taux de prévalence standardisée (TPS)				0.2020		TPS	0.2513
			[2	20.20		%	25.13	

2. <u>DÉPISTAGE DES MALADIES</u> <u>INFECTIEUSES ANIMALES</u>

✓ Dépistage

= Recherche systématique à l'aide d'examens, dans une population, <u>des individus</u> (ou des groupes d'individus) <u>atteints par un trouble</u> de santé donné, <u>passé jusque là inaperçu</u>

√ Diagnostic

= identification d'une maladie chez un sujet qui présente des troubles

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

2.1. Valeur des tests de dépistage

Les « vrais » et les « faux » (table de contingence)

Test	Statut infectieux réel des animaux (M)		
	Infectés (M +) Indemnes (M -)		
+	Vrais positifs (VP) correct	Faux positifs (FP)	
	Faux négatifs (FN)	Vrais négatifs (VN) correct	

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

33

2.2. <u>Sensibilité et spécificité</u> <u>d'un test</u>

Sensibilité (Se)

 probabilité conditionnelle d'obtenir un résultat positif par un test de diagnostic chez un animal réellement infecté = P (T+/M+)

La sensibilité d'un test correspond à son <u>aptitude à</u> fournir une réponse positive chez un individu malade ou infecté

Se =	VP	
56 –	VP + FN	

Test	Statut infectieux réel des animaux (M)			
	Infectés (M +) Indemnes (M -)			
+	Vrais positifs (VP)	Faux positifs (FP)		
_	Faux négatifs (FN)	Vrais négatifs (VN)		

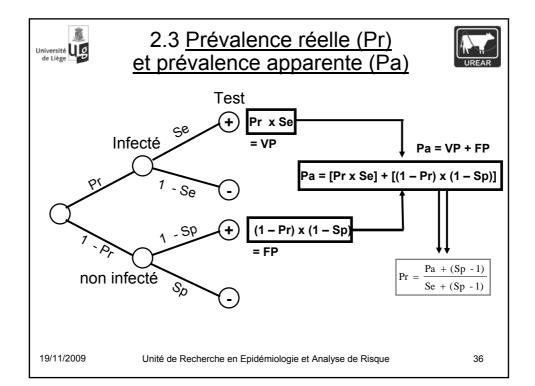
19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

2.2. <u>Sensibilité et spécificité</u> <u>d'un test</u>

Spécificité (Sp)

= Probabilité conditionnelle d'obtenir un résultat négatif par un test de diagnostic chez un animal sain

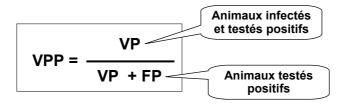

$$= P (T - / M -)$$

Aptitude d'un test à fournir une réponse négative chez un animal sain

Test	Statut infectieux réel des animaux (M)			
	Infectés (M +) Indemnes (M -)			
+	Vrais positifs (VP)	Faux positifs (FP)		
_	Faux négatifs (FN)	Vrais négatifs (VN)		

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque



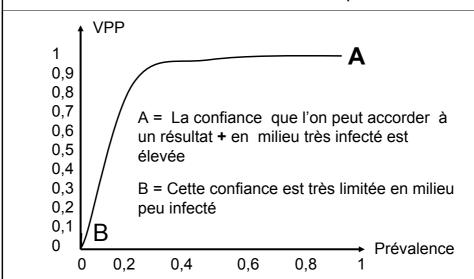
2.4. Les valeurs prédictives

Valeur prédictive d'un résultat positif (VPP)

- = proportion de vrais positifs parmi l'ensemble des réponses positives fournies par le test de dépistage
- = probabilité qu'un animal soit réellement malade quand le résultat du test est positif = P (M+ / T+)

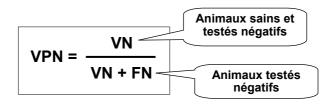
19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

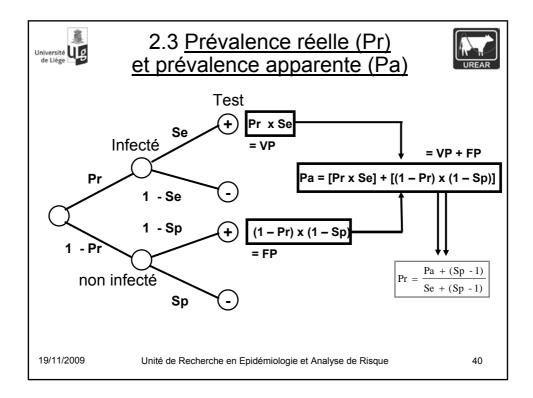

37

2.4. Les valeurs prédictives

Evolution de la VPP en fonction de la prévalence:



2.4. Les valeurs prédictives


Valeur prédictive d'un résultat négatif (VPN)

= probabilité qu'un animal soit réellement sain quand le résultat du test est négatif = P (M-/T-)

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

2.4. Les valeurs prédictives

Calcul possible sur la population cible si on connaît la prévalence

Possible si on connaît Se et Sp du test

$$VPP = \underbrace{\frac{P \times Se}{P \times Se + (1-P) \times (1-Sp)}}_{P \times Se + (1-P) \times (1-Sp)} = \underbrace{\frac{VP}{VP + FP}}_{Pr\text{\'e}valence apparente}$$

VPN =
$$\frac{\text{(1-P) x Sp}}{\text{(1-P) x Sp + P x (1-Se)}} = \frac{VN}{VN + FN}$$

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

41

2.5. Relations entre Se, Sp et P

	Malades	Indemnes	Total	
Test +	VP Se*P	FP (1–Sp)*(1–P)	[Se*P]+ [(1-Sp)*(1-P)]	
Test -	FN (1–Se)*P	VN Sp*(1–P)	[(1-Se)*P]+[Sp*(1-P)]	
Total	Р	(1–P)	1	

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

Exercice (souvenirs, souvenirs...de 3ème bac)

UREAR

Pour le dépistage de la tuberculose bovine, on utilise un test dont le résultat est négatif chez 30% des sujets atteints et positif chez 25% des sujets indemnes.

- 1. Calculer Se et Sp
- 2. Pour un taux de prévalence réelle de 1%, établissez la table de contingence.
- 3. Quel sera le taux de prévalence apparente?
- 4. Quelles seront VPP? VPN?

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

43

Exercice (suite)

1. Test dont le résultat est négatif chez 30% des sujets atteints et positif chez 25% des sujets indemnes Se? Sp?

Test	Etat de santé		
1621	Malades	Sains	
Positif	70	25	
Négatif	30 75		
Total	100	100	

Se =
$$\frac{T + }{Malades} = \frac{70}{100}$$
 Sp = $\frac{T - }{Sains} = \frac{75}{100}$

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

Exercice (suite)

2. Pour un taux de prévalence réelle (Pr) de 1%, établissez la table de contingence

$$Pr = 1\% = \frac{100}{10000}$$

Test	Etat de santé				
	Malades Sains Total				
Positif	70	9900 x 0,25			
Négatif	30	9900 x 0,75			
Total	100	9900	10000		

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

45

Exercice (suite)

3. Quel sera le taux de prévalence apparente (Pa) ?

Test		Etat de santé			
	Malades	Sains	Total		
Positif	70 VP	2475 FP	2545		
Négatif	30	7425	7455		
Total	100	9900	10000		

Pa =
$$\frac{\text{VP + FP}}{\text{Total}} = \frac{2545}{10000} = 25,45\% \neq \boxed{\text{Pr = 1\%}}$$

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

Exercice (suite)

3. Quelles seront les VPP et VPN?

Test	Etat de santé					
	Malades Sains Total					
Positif	70 VP	2475 FP	2545			
Négatif	30	7425	7455			
Total	100	9900	10000			

$$VPP = \frac{VP}{VP + FP} = \frac{70}{2545} = 0,0275 = 2,75\%$$

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

47

Exercice (suite)

3. Quelles seront les VPP et VPN?

Test	Etat de santé					
	Malades Sains Total					
Positif	70	2475	2545			
Négatif	30 FN	7425 VN	7455			
Total	100	9900	10000			

$$VPN = \frac{VN}{VN + FN} = \frac{7425}{7455} = 0,9959 = 99,59\%$$

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

ANALYSE DE RISQUE

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

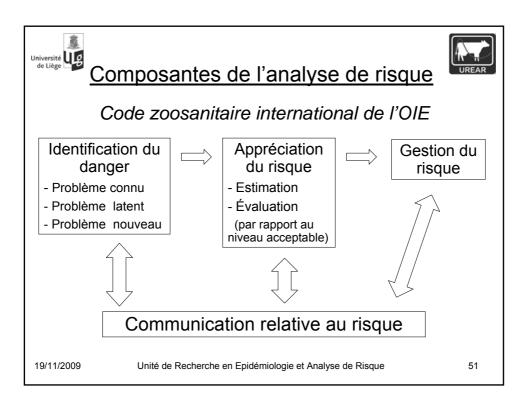
49

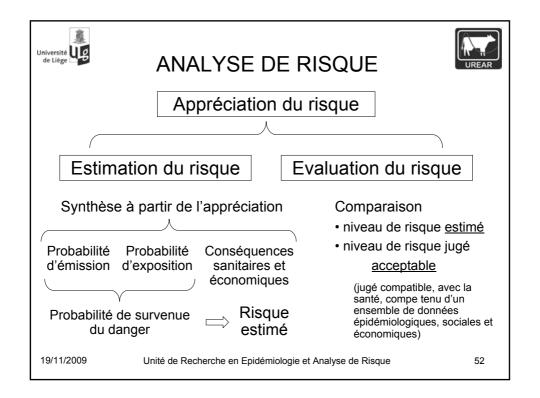
ANALYSE DE RISQUE

Qu'est-ce que l'analyse de risque? Définition:

« une démarche scientifique faite dans le but d'identifier les dangers connus ou potentiels, d'en apprécier les risques, de les gérer et de communiquer à leur propos»

Qu'est-ce qu'un danger (hazard)? Notion qualitative


« tout agent biologique, chimique ou physique pouvant avoir un effet néfaste pour la santé »


Qu'est-ce qu'un risque (risk)? Notion quantitative

« probabilité de survenue d'un danger, combinée à l'importance de ses composantes (fréquence d'occurrence et importance des conséquences)

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

ANALYSE DE RISQUE

QUALITATIVE

√ N'inclut pas la quantification des paramètres mais utilise des échelles descriptives pour le risque:

- Négligeable
- Faible
- Modéré
- Élevé

QUANTITATIVE

✓ Approche numérique. En cas d'informations manquantes, il convient de formuler des hypothèses

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

53

ANALYSE DE RISQUE: cas pratiques

Approche qualitative

risque lié à l'importation d'animaux vivants

Approche quantitative

risque de présence d'une maladie

calcul de la taille de l'échantillon nécessaire pour la detection d'au moins un animal malade

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

1.Risque lié à l'importation d'animaux

- ✓ Probabilité d'émission:
 - Nombre d'animaux importés
 - · Prévalence annoncée dans le pays d'origine
 - · Qualité des services vétérinaires
 - Qualité du réseau de surveillance dans le pays exportateur
 - · Mesures de lutte dans le pays exportateur
- ✓ Probabilité d'exposition
- ✓ Conséquences économiques et sanitaires

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

55

1.Risque lié à l'importation d'animaux

- ✓ Probabilité d'émission
- ✓ Probabilité d'exposition:
 - · Mécanisme de transmission et facteurs de survie de l'agent pathogène
 - Potentialité de contamination dans le pays importateur
 - Mesures préventives à destination
 - Présence de vecteurs et de réservoirs potentiels dans le pays importateur
- ✓ Conséquences économiques et sanitaires (si zoonose)

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

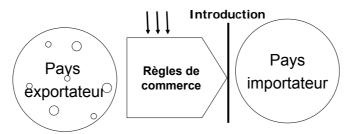
1.Risque lié à l'importation d'animaux

Grille de Zepeda, 1998

Probabilité de l'événement 2	Probabilité de l'événement 1			
	Négligeable	Faible	Modérée	Élevée
Négligeable	Négligeable	Faible	Faible	Modérée
Faible	Faible	Faible	Modérée	Modérée
Modérée	Faible	Modérée	Modérée	Élevée
Élevée	Modérée	Modérée modérée Élevée Élevée		

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque


57

1.Risque lié à l'importation d'animaux

- ✓ Risque potentiel d'introduction de maladie si :
 - La <u>prévalence</u> dans le pays exportateur > 0 et/ou
 - · Les animaux peuvent être infectés durant le transport (incidence)
 - La prévalence dans le pays qui importe est de zéro ou beaucoup plus faible que dans le pays exportateur

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

1.Risque lié à l'importation d'animaux: approche qualitative

Analyse du risque d'épizootie de fièvre de la Vallée du Rift en République Centrafricaine (RCA) à partir du Tchad et du Soudan

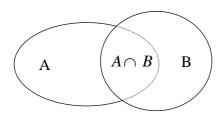
Paramètre	Niveau de risque estimé
Probabilité d'introduction: • Pr de la maladie dans les 2 pays frontaliers • Niveau d'échange d'animaux entre les pays frontaliers • Capacité de survie du virus dans l'environnement	Faible Modéré Négligeable
Risque d'exposition • Potentialité de contamination des animaux en RCA • Probabilité de diffusion de l'épizootie • Survie et installation du virus en RCA	Faible Modéré Faible
Conséquences	Modéré

1.Risque lié à l'importation d'animaux: approche qualitative

Analyse du risque d'épizootie de fièvre de la Vallée du Rift en république centrafricaine (RCA) à partir du Tchad et du Soudan

Conclusion:

Rubrique	Niveau de risque par rubrique	Conclusion (= niveau global du risque)
Probabilité d'introduction	Faible	Modéré
Risque d'exposition	Modéré	
conséquences	Modéré	

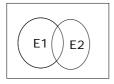

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

Notions de probabilités

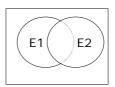
 $P(A \cap B)$? Probabilité d'avoir à la fois A et B

19/11/2009


Unité de Recherche en Epidémiologie et Analyse de Risque

61

Probabilités: Règles d'addition EVENEMENTS NON INDEPENDANTS



Union

= toutes les possibilités que contient soit E1,soit E2, soit les deux à la fois

$$P(E1 U E2) = P(E1) + P(E2)$$

- $P(E1 \cap E2)$

Intersection

 constituée par tous les éléments communs en même temps à E1 et E2

P(E1 ∩ E2)

Probabilités: Règles d'addition

EVENEMENTS INDEPENDANTS

Aucun élément commun à E1 et E2 L'occurrence de E1 n'a aucun effet sur E2

- ✓ Probabilité d'avoir un élément de E1 <u>OU</u> de E2:
 P(E1 U E2) = P(E1) + P(E2)
- ✓ Probabilité d'avoir un élément de E1 <u>ET</u> de E2: $P(E1 \cap E2) = P(E1) \times P(E2)$

Exemple: lancer de dés, avoir 2 six consécutifs

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

63

Probabilités: application

Exemple: tirage au sort de 5 cochons dans une ferme

- · La ferme a un pourcentage d'infection de 10%
- La probabilité que les 5 animaux échantillonnés soient contaminés est:

$$P(5C+) = 0.10 \times 0.10 \times 0.10 \times 0.10 \times 0.10 = 0.10^5$$

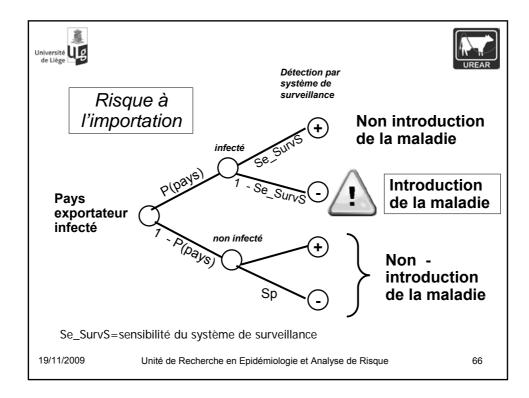
- La probabilité qu'aucun des 5 animaux ne soit contaminé:
 P (5C-) = (1-0,10)⁵ = 0,59 = 59%
- · La probabilité qu'au moins 1 des animaux soit contaminé:

$$P(1C+) = 1 - (1 - 0.10)^5 = 1-0.59 = 41\%$$
 complément

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

Application dans le cadre de <u>l'analyse de risque</u>

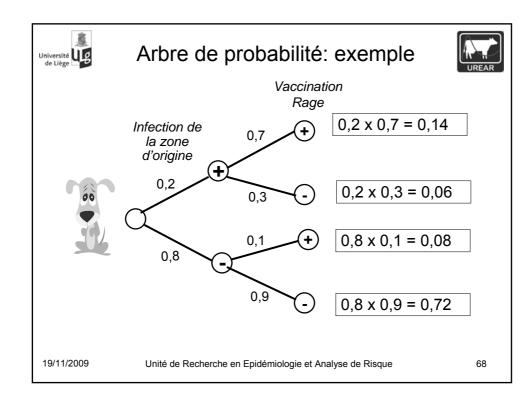

Exemple: Risque à l'importation:

- ✓ Les animaux importés sont-ils infectés?
- ✓ Si oui, sont-ils positifs au test de surveillance?
- ✓ Quel est le risque d'importation?

Faites un arbre de décision pour répondre à ces questions

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque


Université Risque lié à l'importation d'animaux: arbre de probabilité

- ✓ Exemple d'arbre de probabilité fondé sur la zone d'origine d'un chien et la vaccination antirabique
 - Dans un pays X, 20% de la population canine vit en zone d'enzootie de rage et 80% en zone indemne. En zone d'enzootie, la proportion de chiens vaccinés est de 70% et en zone indemne, elle n'est que de 10%
 - Comment construire un arbre de probabilité avec ces données et calculer les différentes probabilités lors de tirage au sort d'un chien?

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

Risque à l'importation: exercice

✓ Données

- 15 animaux cliniquement sains sélectionnés pour l'exportation
- Les experts estiment qu'une forme latente de la maladie X peut aller jusqu'à 10 % de la population porcine des pays exportateurs
- ✓ Quelle est la probabilité qu'au moins un animal infecté mais cliniquement sain (forme latente) soit dans le consignement?

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

69

SOLUTION

La probabilité qu'au moins 1 des animaux soit contaminé:

$$✓$$
 N = 15

✓
$$P = 10\%$$

$$P(15 +) = (0,10)^{15}$$

$$P(15-) = (1-0,10)^{15}$$

P (1 +) = 1 - [P(15 -)]
1-
$$(1-0,10)^{15}$$
 = 1 - 0,90¹⁵ = 0,79

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

<u>Déterminer la taille d'un échantillon</u> <u>pour détecter un phénomène</u>

✓ Population finie:

probabilité de n'avoir aucun malade parmi n animaux tirés au sort dans une population N:

$$\alpha = \frac{C_{N-M}^{n}}{C_{N}^{n}}$$

$$n = taille échantillon$$

$$N = taille population$$

$$M = nombre de malades dans la population$$

Cⁿ_{N-M} = nombre de combinaisons de n éléments parmi les (N-M)

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

71

<u>Déterminer la taille d'un échantillon</u> (n) pour détecter un phénomène

Solution approchée pour le calcul de n

$$n = [1 - (\alpha)^{1/M}] \times [N - M/2] + 1$$

- α = La probabilité de n'avoir aucun malade parmi n animaux tirés au sort dans une population N (niveau de confiance): 0,05 si on veut avoir 95% de chances de détecter au moins un animal positif
- n = taille échantillon pour avoir 95% de chances qu'au moins un animal contaminé soit présent dans l'échantillon

N = taille population

M = nombre d'unités malades dans la population

<u>Déterminer la taille d'un échantillon</u> (n) pour détecter un phénomène

Exemple:

Si alpha = 5% (0,05) taille de la population = 500 Prévalence au moins égale à 10%: N = 500 M = 50 Alpha = 0,05

n =
$$[1 - (0.05)^{1/50}] \times [500 - 50/2] + 1$$

= $[1 - 0.94184] \times 475 + 1$
= $0.05815 \times 475 + 1$
= $28.6 = 29$

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

73

Exercice

- √ Population de 1000 porcs
- √ Au moins 10 cochons atteints de rhinite atrophique, si l'infection était présente
- ✓ La taille de l'échantillon pour être sûr à 95% de détecter au moins 1 animal malade est alors :

Complétez la suite...

$$n = [1 - (\alpha)^{1/M}] \times [N - M/2] + 1$$

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

Exercice

$$\sqrt{N} = 1000$$

= 260

$$\sqrt{M} = 10$$

$$n = [1 - (\alpha)^{1/M}] \times [N - M/2] + 1$$

$$N = [1 - (0,05)^{1/10}] \times [1000 - 10/2] + 1$$
$$= ([1 - 0,74] \times 995) + 1$$
$$= 258,7 + 1$$

Comment évoluerait cette taille d'échantillon pour une prévalence de 0,5%? De 80%?

19/11/2009

Unité de Recherche en Epidémiologie et Analyse de Risque

